If $$\alpha, \beta$$ and $$\gamma$$ are the cube roots of $$P,(P<0)$$, then for any $$x, y$$ and $$z$$ which does not make denominator zero, the expression $$\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$$ equals to
If $$x+\frac{1}{x}=1$$ and $$p=x^{4000}+\frac{1}{x^{4000}}$$ and $$q$$ is the digit at unit place in the number $$2^{2 n}+1$$, then the value of $$(p+q)$$ is equal to
Let $$z_k=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots \ldots \ldots$$ 9, then $$\frac{1}{10}\left\{\left|1-z_1\right|\left|1-z_2\right| \ldots .\left|1-z_a\right|\right\}$$ equals to
If $$m$$ and $$n$$ are order and degree of the question $$\left(\frac{d^2 y}{d x^2}\right)^4+8 \frac{\left(d^2 y / d x^2\right)^3}{\left(d^4 y / d x^4\right)^5}+\left(\frac{d^4 y}{d x^4}\right)=x^2+4$$, then $$m-n$$ is equal to