1
MHT CET 2022 11th August Evening Shift
MCQ (Single Correct Answer)
+2
-0

A spherical iron ball of $$10 \mathrm{~cm}$$ radius is coated with a layer of ice of uniform thickness that melts at the rate of $$50 \mathrm{~cm}^3 / \mathrm{min}$$. If the thickness of ice is $$5 \mathrm{~cm}$$, then the rate at which the thickness of ice decreases is

A
$$\frac{-1}{18 \pi} \mathrm{cm} / \mathrm{min}$$
B
$$\frac{2}{9 \pi} \mathrm{cm} / \mathrm{min}$$
C
$$\frac{1}{18 \pi} \mathrm{cm} / \mathrm{min}$$
D
$$\frac{1}{3 \pi} \mathrm{cm} / \mathrm{min}$$
2
MHT CET 2022 11th August Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x=$$

(where $$C$$ is a constant of integration.)

A
$$x+\sin x+\sin 2 x+C$$
B
$$x+\sin x+\sin 2 x-C$$
C
$$x+2 \sin x+2 \sin 2 x+C$$
D
None of these
3
MHT CET 2022 11th August Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the points $$(2,3,1),(4,-5,3)$$ and parallel to $$X$$-axis is

A
$$3 y+4 z=13$$
B
$$y-4 z=-1$$
C
$$2 y+4 z=19$$
D
$$y+4 z=7$$
4
MHT CET 2022 11th August Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\text { If } \int e^{x^2} \cdot x^3 \mathrm{~d} x=e^{x^2} \cdot[f(x)+C]$$ (where $$C$$ is a constant of integration.) and $$f(1)=0$$, then value of $$f(2)$$ will be

A
$$\frac{-3}{2}$$
B
$$\frac{-1}{2}$$
C
$$\frac{3}{2}$$
D
$$\frac{1}{2}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12