$$\matrix{ {f(x) = a{x^2} + bx + 1,} & {if} & {\left| {2x - 3} \right| \ge 2} \cr { = 3x + 2,} & {if} & {{1 \over 2} < x < {5 \over 2}} \cr } $$
is continuous on its domain, then $$a+b$$ has the value
If $$\bar{a}=\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}, \bar{b}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$$ and $$\bar{c}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}$$ are three vectors then vector $$\bar{r}$$ in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\bar{c}$$ is $$\frac{1}{\sqrt{3}}$$, is given by
A tetrahedron has verticles $$P(1,2,1), Q(2,1,3), R(-1,1,2)$$ and $$O(0,0,0)$$. Then the angle between the faces $$O P Q$$ and $$P Q R$$ is
The principal value of $$\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$$ is