1
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$3 \hat{j}, 4 \hat{k}$$ and $$3 \hat{j}+4 \hat{k}$$ are the position vectors of the vertices $$A, B, C$$ respectively of $$\triangle A B C$$, then the position vector of the point in which the bisector of $$\angle \mathrm{A}$$ meets $$\mathrm{BC}$$ is

A
$$\frac{5}{3} \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$$
B
$$5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$$
C
$$5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$
D
$$\frac{5}{3} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$
2
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

10 is divided into two parts such that the sum of double of the first and square of the other is minimum, then the numbers are respectively

A
9, 1
B
8, 2
C
6, 4
D
7, 3
3
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $$\mathrm{ABC}$$, with usual notations $$\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=5$$, then $$\frac{\cos \mathrm{A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{\cos \mathrm{C}}{\mathrm{c}}=$$

A
$$\frac{19}{30}$$
B
$$\frac{19}{60}$$
C
$$\frac{23}{60}$$
D
$$\frac{38}{35}$$
4
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$$, for $$x \neq \pi$$ is continuous at $$x=\pi$$, then the value of $$f(\pi)$$ is

A
$$\frac{-1}{2}$$
B
$$-1$$
C
1
D
$$\frac{1}{2}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12