Two waves are represented by the equation, $$\mathrm{y}_1=\mathrm{A} \sin (\omega \mathrm{t}+\mathrm{kx}+0.57) \mathrm{m}$$ and $$\mathrm{y}_2=\mathrm{A} \cos (\omega \mathrm{t}+\mathrm{kx}) \mathrm{m}$$, where $$\mathrm{x}$$ is in metre and $$\mathrm{t}$$ is in second. What is the phase difference between them?
An ideal gas at pressure '$$p$$' is adiabatically compressed so that its density becomes twice that of the initial. If $$\gamma=\frac{c_p}{c_v}=\frac{7}{5}$$, then final pressure of the gas is
In common emitter amplifier, a change of 0.2 mA in the base current causes a change of 5 mA in the collector current. If input resistance is 2 k$$\Omega$$ and voltage gain is 75, the load resistance used in the circuit is
Figure shows triangular lamina which can rotate about different axes moment of inertia is maximum, about the axis