Three metal rods of the same material and identical in all respects are joined as shown in the figure. The temperatures at the ends of these rods are maintained as indicated. Assuming no heat energy loss occurs through the curved surfaces of the rods, the temperature at the junction x is

A gas is taken from state A to state B along two different paths 1 and 2. The heat absorbed and work done by the system along these two paths are $Q_1$ and $Q_2$ and $W_1$ and $W_2$ respectively. Then
At $27^{\circ} \mathrm{C}$ temperature, the mean kinetic energy of the atoms of an ideal gas is $\mathrm{E}_1$. If the temperature is increased to $327^{\circ} \mathrm{C}$, then the mean kinetic energy of the atoms will be
The variations of kinetic energy $K(x)$, potential energy $U(x)$ and total energy as a function of displacement of a particle in SHM is as shown in the figure. The value of $\left|x_0\right|$ is
