$$ \text { If } \mathrm{AB} \text { is incident plane wave front then refracted wave front in }\left(\mathrm{n}_2>\mathrm{n}_1\right) $$





The total energy carried by the light wave when it travels from a rarer to a non-reflecting and nonabsorbing medium
If the radius of first Bohr orbit is $r$, then the radius of the second Bohr orbit will be
$$ \text { Match the following types of nuclei with examples shown } $$
$$ \begin{array}{|l|l|} \hline \text { Column-I } & \text { Column-II } \\ \hline \text { A. Isotopes } & \text { i. } \mathrm{Li}^7, \mathrm{Be}^7 \\ \hline \text { B. Isobars } & \text { ii. }{ }_8 \mathrm{O}^{18},{ }_9 \mathrm{~F}^{19} \\ \hline \text { C. Isotopes } & \text { iii. }{ }_1 \mathrm{H}^1,{ }_1 \mathrm{H}^2 \\ \hline \end{array} $$