1
KCET 2025
MCQ (Single Correct Answer)
+1
-0

Three particles of mass $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg are placed at the vertices A, B and C respectively of an equilateral triangle ABC of side 1 m . The centre of mass of the system from vertex A (located at origin) is

A
$\left(\frac{7}{12}, \frac{3 \sqrt{3}}{12}\right)$
B
$\left(\frac{9}{12}, \frac{3 \sqrt{3}}{12}\right)$
C
$\left(\frac{7}{12}, \frac{6+3 \sqrt{3}}{12}\right)$
D
$(0,0)$
2
KCET 2025
MCQ (Single Correct Answer)
+1
-0

Two fly wheels are connected by a non-slipping belt as shown in the figure. $I_1=4 \mathrm{~kg} \mathrm{~m}^2, r_1=20 \mathrm{~cm}$, $\mathrm{I}_2=20 \mathrm{~kg} \mathrm{~m}^2$ and $\mathrm{r}_2=30 \mathrm{~cm}$. A torque of 10 Nm is applied on the smaller wheel. Then match the entries of column I with appropriate entries of column II.

I Quantities II Their numerical Values (in SI units)
(a) Angular acceleration of smaller wheel (i) 5 3 5 3 (5)/(3)
(b) Torque on the larger wheel (ii) 100 3 100 3 (100)/(3)
(c) Angular acceleration of larger wheel (iii) 5 2 5 2 (5)/(2)
KCET 2025 Physics - Rotational Motion Question 1 English
A
$a-i i, b-i i i, c-i$
B
$a-i i i, b-i, c-i i$
C
$a-i i, b-i, c-i i i$
D
$a-i i i, b-i i, c-i$
3
KCET 2025
MCQ (Single Correct Answer)
+1
-0

If $r_p, v_p, L_p$ and $r_a, v_a, L_a$ are radii, velocities and angular momenta of a planet at perihelion and aphelion of its elliptical orbit around the Sun respectively, then

A
$r_p>r_a, v_p>v_a, L_a>L_p$
B
$r_p < r_a, v_p > v_a, L_a=L_p$
C
$\mathrm{r}_{\mathrm{p}} > \mathrm{r}_{\mathrm{a}}, \mathrm{v}_{\mathrm{p}} < \mathrm{v}_{\mathrm{a}}, \mathrm{L}_{\mathrm{a}}=\mathrm{L}_{\mathrm{p}}$
D
$\mathrm{r}_{\mathrm{p}} < \mathrm{r}_{\mathrm{a}}, \mathrm{v}_{\mathrm{p}} < \mathrm{v}_{\mathrm{a}}, \mathrm{L}_{\mathrm{a}} < \mathrm{L}_{\mathrm{p}}$
4
KCET 2025
MCQ (Single Correct Answer)
+1
-0

The total energy of a satellite in a circular orbit at a distance $(R+h)$ from the centre of the Earth varies as [ $R$ is the radius of the Earth and $h$ is the height of the oribit from Earth's surface]

A
$-\frac{1}{(\mathrm{R}+\mathrm{h})}$
B
$\frac{1}{(R+h)^2}$
C
$-\frac{1}{(R+h)^2}$
D
$\frac{1}{(\mathrm{R}+\mathrm{h})}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12