The resistance of $$0.01 \mathrm{~m} \mathrm{~KCl}$$ solution at $$298 \mathrm{~K}$$ is $$1500 \Omega$$. If the conductivity of $$0.01 \mathrm{~m} \mathrm{~KCl}$$ solution at $$298 \mathrm{~K}$$ is $$0.1466 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$$. The cell constant of the conductivity cell in $$\mathrm{cm}^{-1}$$ is
$$\mathrm{H}_2(g)+2 \mathrm{AgCl}(s) \rightleftharpoons 2 \mathrm{Ag}(s)+2 \mathrm{HCl}(a q)$$
$$E_{\text {cell }}^{\circ}$$ at $$25^{\circ} \mathrm{C}$$ for the cell is $$0.22 \mathrm{~V}$$. The equilibrium constant at $$25^{\circ} \mathrm{C}$$ is
For a reaction, $$A+2 B \rightarrow$$ Products, when concentration of $$B$$ alone is increased half-life remains the same. If concentration of $$A$$ alone is doubled, rate remains the same. The unit of rate constant for the reaction is
The third ionisation enthalpy is highest in