1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $a$ be a nonzero real number and $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function such that $f^{\prime}(x)>0$ for all $x \in R$. Consider $g(x)=f\left(2 a^2 x-a x^2\right)$. Then $g$ has
A
Local maxima at $x=a$ if $a>0$
B
Local maxima at $x=a$ if $a<0$
C
Local minima at $x=a$ if $a>0$
D
A point of inflection at $x=a$
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $A$ be the matrix $\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 1 & 1 & 1 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. For any natural number $k$, the determinant of $A^k$ is
A
0
B
1
C
-1
D
$(-1)^k$
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Consider the vectors $\vec{a}=\hat{\imath}+x \hat{\jmath}+2 \hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}+x \hat{k}, \vec{c}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$. The values of $x$ for Which there is at least one nonzero vector perpendicular to the vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are
A
0,2
B
$-2,2$
C
$7 / 2,0$
D
$4,-2$
4
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Consider the tangent lines to the circle $x^2+y^2=1$ at points $P=(1,0)$ and $Q=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. If $R$ is the point of intersection of these two tangent lines, then $\angle P R Q$ is:
A
$\frac{\pi}{4}$
B
$\frac{3 \pi}{4}$
C
$\frac{5 \pi}{6}$
D
$\frac{\pi}{6}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12