1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Consider the vectors $\vec{a}=\hat{\imath}+x \hat{\jmath}+2 \hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}+x \hat{k}, \vec{c}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$. The values of $x$ for Which there is at least one nonzero vector perpendicular to the vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are
A
0,2
B
$-2,2$
C
$7 / 2,0$
D
$4,-2$
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Consider the tangent lines to the circle $x^2+y^2=1$ at points $P=(1,0)$ and $Q=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. If $R$ is the point of intersection of these two tangent lines, then $\angle P R Q$ is:
A
$\frac{\pi}{4}$
B
$\frac{3 \pi}{4}$
C
$\frac{5 \pi}{6}$
D
$\frac{\pi}{6}$
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
The function given by $f(x)=2 x^3-15 x^2+36 x-5$ is
A
Increasing on the interval $(0,2)$
B
Decreasing on the interval $(-3,0)$
C
Increasing on the interval $(2,3)$
D
Decreasing on the interval $(3, \infty)$
4
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1

The value of the integral

$$ \int_1^{100} \frac{[x]}{x} d x $$

where $[x]$ is the greatest integer less than or equal to $x$ for any real number $x$, is

A
$\log \left(\frac{100^{98}}{98!}\right)$
B
$\log \left(\frac{100^{99}}{98!}\right)$
C
$\log \left(\frac{100^{98}}{99!}\right)$
D
$\log \left(\frac{100^{99}}{99!}\right)$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12