1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $f$ be a continuous function on $[0,1]$ and $F$ be its antiderivative. If $F(0)=1$ and $\int_0^1 f(x) d x=1$, then $F(1)$ is
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $a$ be a nonzero real number and $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function such that $f^{\prime}(x)>0$ for all $x \in R$. Consider $g(x)=f\left(2 a^2 x-a x^2\right)$. Then $g$ has
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Let $A$ be the matrix $\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 1 & 1 & 1 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$. For any natural number $k$, the determinant of $A^k$ is
4
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Consider the vectors $\vec{a}=\hat{\imath}+x \hat{\jmath}+2 \hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}+x \hat{k}, \vec{c}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$. The values of $x$ for Which there is at least one nonzero vector perpendicular to the vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are
Paper analysis
Total Questions
Biology
15
Chemistry
15
Mathematics
15
Physics
15
More papers of IAT (IISER)
IAT (IISER)
Papers
2024
2023
2022
2020