1
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
Consider the tangent lines to the circle $x^2+y^2=1$ at points $P=(1,0)$ and $Q=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. If $R$ is the point of intersection of these two tangent lines, then $\angle P R Q$ is:
A
$\frac{\pi}{4}$
B
$\frac{3 \pi}{4}$
C
$\frac{5 \pi}{6}$
D
$\frac{\pi}{6}$
2
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
The function given by $f(x)=2 x^3-15 x^2+36 x-5$ is
A
Increasing on the interval $(0,2)$
B
Decreasing on the interval $(-3,0)$
C
Increasing on the interval $(2,3)$
D
Decreasing on the interval $(3, \infty)$
3
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1

The value of the integral

$$ \int_1^{100} \frac{[x]}{x} d x $$

where $[x]$ is the greatest integer less than or equal to $x$ for any real number $x$, is

A
$\log \left(\frac{100^{98}}{98!}\right)$
B
$\log \left(\frac{100^{99}}{98!}\right)$
C
$\log \left(\frac{100^{98}}{99!}\right)$
D
$\log \left(\frac{100^{99}}{99!}\right)$
4
IAT (IISER) 2022
MCQ (Single Correct Answer)
+4
-1
For arbitrary constants $\alpha, \beta$, the differential equation representing the family of curves $y=$ $(\alpha x+\beta) e^x$ is
A
$y^{\prime \prime}-2 y^{\prime}+y=0$
B
$y^{\prime \prime}-y^{\prime}+y=0$
C
$y^{\prime \prime}-2 y^{\prime}-y=0$
D
$y^{\prime \prime}-y^{\prime}-y=0$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12