1
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\frac{x+2}{\left(x^2+3\right)\left(x^4+x^2\right)\left(x^2+2\right)}=\frac{A x+B}{x^2+3}+\frac{C x+D}{x^2+2}$ $+\frac{E x^3+F x^2+G x+H}{x^4+x^2}$, then $(E+F)(C+D)(A)=$
A
$-\frac{1}{4}$
B
$-\frac{3}{4}$
C
$\frac{3}{4}$
D
$\frac{1}{4}$
2
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A, B, C$ are the angles of triangle, then $\sin 2 A-\sin 2 B+\sin 2 C=$
A
$4 \cos A \cos B \sin C$
B
$4 \cos A \sin B \cos C$
C
$4 \cos A \sin B \cos C-1$
D
$4 \sin A \cos B \sin C$
3
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Assertion (A) : If $A=10^{\circ}, B=16^{\circ}$ and $C=19^{\circ}$, then $\tan 2 A \tan 2 B+\tan 2 B \tan 2 C+\tan 2 C \tan 2 A=1$

Reason (R) : If $A+B+C=180^{\circ}, \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$

$$ =\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2} $$

Which of the following is correct ?

A
Both $(A)$ and $(R)$ are true and $(R)$ is the correct explanation of (A)
B
Both $(A)$ and $(R)$ are true and $(R)$ is not correct explanationot (A)
C
(A) is true, ( $R$ ) is false
D
(A) is false, (R) is true.
4
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha$ is in the 3rd quadrant, $\beta$ is in the 2nd quadrant such that $\tan \alpha=\frac{1}{7}, \sin \beta=\frac{1}{\sqrt{10}}$, then $\sin (2 \alpha+\beta)=$
A
$\frac{3 \times \sqrt{10}}{25}$
B
$\frac{3}{\sqrt{10}}$
C
$\frac{3}{25 \sqrt{10}}$
D
$\frac{\sqrt{10}}{3 \times 25}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12