1
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equation of a circle which touches the straight lines $x+y=2, x-y=2$ and also touches the circle $x^2+y^2=1$ is
A
$(x+\sqrt{2})^2+y^2=3-\sqrt{2}$
B
$(x+\sqrt{2})^2+y^2=1-2 \sqrt{2}$
C
$(x-\sqrt{2})^2+y^2=2(1-\sqrt{2})$
D
$(x-\sqrt{2})^2+y^2=3-2 \sqrt{2}$
2
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The radical axis of the circle $x^2+y^2+2 g x+2 f y+c=0$ and $2 x^2+2 y^2+3 x+8 y+2 c=0$ touches the circle $x^2+y^2+2 x+2 y+1=0$. Then,
A
$g=\frac{3}{8}$ or $f=1$
B
$g=\frac{2}{3}$ or $t=3$
C
$g=\frac{1}{2}$ or $f=1$
D
$g=\frac{3}{4}$ or $f=2$
3
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the ordinates of points $P$ and $Q$ on the parabola $y^2=12 x$ are in the ratio $1: 2$. Then, the locus of the point of intersection of the normals to the parabola at $P$ and $Q$ is
A
$y+18\left(\frac{x-6}{21}\right)^{\frac{3}{2}}=0$
B
$y-18\left(\frac{x-6}{12}\right)^{\frac{3}{2}}=0$
C
$y+12\left(\frac{x-6}{14}\right)^{\frac{1}{2}}=0$
D
$y-12\left(\frac{x-6}{18}\right)^{\frac{1}{2}}=0$
4
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The product of perpendiculars from the two foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{25}=1$ on the tangent at any point on the ellipse is
A
6
B
7
C
8
D
9
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12