1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the function $f(x)=\sqrt{x^2-4}$ satisfies the Lagrange's mean value theorem on $[2,4]$, then the value of $C$ is
A
$2 \sqrt{3}$
B
$-2 \sqrt{3}$
C
$\sqrt{6}$
D
$-\sqrt{6}$
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $x, y$ are two positive integers such that $x+y=20$ and the maximum value of $x^3 y$ is $k$ at $x=\alpha$ and $y=\beta$, then $\frac{k}{\alpha^2 \beta^2}=$
A
$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
B
$\frac{\alpha}{\beta}-\frac{\beta}{\alpha}$
C
$\frac{\alpha}{\beta}$
D
$\frac{\alpha+\beta}{\alpha \beta}$
3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{2 x^2-3}{\left(x^2-4\right)\left(x^2+1\right)} d x=A \tan ^{-1} x+B \log (x-2)+C \log (x+2)$, then $6 A+7 B-5 C=$
A
9
B
10
C
6
D
8
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{3 x^9+7 x^8}{\left(x^2+2 x+5 x^8\right)^2} d x=$
A
$\frac{x^7}{5 x^7+x+2}+c$
B
$\frac{x^7}{2\left(5 x^7+x+2\right)}+c$
C

$\frac{1}{2\left(5 x^7+x+2\right)}+c$

D
$\frac{-x^7}{2\left(5 x^7+x+2\right)}+c$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12