1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Let $f(x)=3+2 x$ and $g_n(x)=(f \circ f \circ f o \ldots$ in times $)(x)$, $\forall n \in N$ if all the lines $y=g_n(x)$ pass through a fixed point $(\alpha, \beta)$, then $\alpha+\beta=$
A
-5
B
-4
C
-3
D
-6
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

    Let $a > 1$ and $0 < \mathrm{b} < 1$. If $f: R \rightarrow[0,1]$ is defined by $f(x)=\left\{\begin{array}{ll}a^x, & -\infty < x < 0 \\ b^x, & 0 \leq x < \infty\end{array}\right.$, then $f(x)$ is

A
a bijection

B
one-one but not onto

C
onto but not one-one

D
neither one-one nor onto

3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$ \frac{1}{3 \cdot 7}+\frac{1}{7 \cdot 11}+\frac{1}{11 \cdot 15}+\ldots$ to 50 terms $=$
A
$\frac{50}{203}$
B
$\frac{50}{609}$
C
$\frac{150}{203}$
D
$\frac{25}{609}$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$$ \text { If } A=\left[\begin{array}{lll} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{array}\right] \text {, then } A^2-5 A+6 I= $$
A
$\left[\begin{array}{ccc}8 & 4 & 0 \\ 3 & 8 & 4 \\ 4 & 0 & 12\end{array}\right]$
B
$\left[\begin{array}{ccc}8 & 4 & 0 \\ 3 & 6 & 4 \\ 4 & 0 & 14\end{array}\right]$
C
$\left[\begin{array}{ccc}8 & 6 & 0 \\ 3 & 8 & 4 \\ 2 & 0 & 14\end{array}\right]$
D
$\left[\begin{array}{ccc}8 & 4 & 0 \\ 3 & 8 & 4 \\ 4 & 0 & 14\end{array}\right]$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12