1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the equation of the circle passing through the points of intersection of the circles $x^2-2 x+y^2-4 y-4=0$, $x^2+2 x+y^2+4 y-4=0$ and the point $(3,3)$ is given by $x^2+y^2+\alpha x+\beta y+\gamma=0$, then $3(\alpha+\beta+\gamma)=$
A
32
B
-32
C
-26
D
26
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
A common tangent to the circle $x^2+y^2=9$ and parabola $y^2=8 x$ is
A
$3 x-\sqrt{3 y}+2=0$
B
$x-\sqrt{3} y+6=0$
C
$2 x-\sqrt{3} y+3=0$
D
$x-3 y+6=0$
3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Let F and $F^1$ be the foci of the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1(b<2)$ and $B$ is one end of the minor axis. If the area of the triangle $\mathrm{FBF}^1$ is $\sqrt{3}$ sq units, then the eccentricity of the ellipse is
A
$\frac{\sqrt{3}}{2}$ or $\frac{1}{2}$
B
$\frac{1}{\sqrt{3}}$
C
$\frac{\sqrt{3}}{4}$ or $\frac{1}{4}$
D
$\frac{3}{4}$ or $\frac{1}{4}$
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If a circle of radius 4 cm passes through the foci of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{4}=1$ and concentric with the hyperbola, then the eccentricity of the conjugate hyperbola of that hyperbola is
A
2
B
$2 \sqrt{3}$
C
$2 / \sqrt{3}$
D
$\sqrt{3}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12