1
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $f(x)=\int \frac{x}{\left(x^2+1\right)\left(x^2+3\right)} d x$. If $f(3)=\frac{1}{4} \log \left(\frac{5}{6}\right)$, then $f(0)=$
A
$\frac{1}{4} \log \left(\frac{1}{3}\right)$
B
0
C
$\frac{1}{2} \log \left(\frac{1}{3}\right)$
D
$\log \left(\frac{1}{3}\right)$
2
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$$ \int \frac{2 \cos 2 x}{(1+\sin 2 x)(1+\cos 2 x)} d x= $$
A
$2 \tan x+\log (1+\tan x)+c$
B
$\tan x-2 \log (1+\tan x)+c$
C
$2 \log (1+\tan x)+\tan x+c$
D
$2 \log (1+\tan x)-\tan x+c$
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$$ \int\left(\frac{x}{x \cos x-\sin x}\right)^2 d x= $$
A
$\frac{x \operatorname{cosec} x}{x \cos x-\sin x}+\cot x+c$
B
$\frac{x \operatorname{cosec} x}{x \cos x-\sin x}-\cot x+c$
C
$\frac{x \operatorname{cosec} x}{x \cos +\sin x}+\cot x+c$
D
$\frac{x}{x \cos x-\sin x}-\cot x+c$
4
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots\left(1+\frac{n^2}{n^2}\right)\right]^{\frac{1}{n}}=a e^b$, then $$ a+b= $$
A
$\pi-2$
B
$\pi$
C
$\pi+2$
D
$\frac{\pi}{2}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12