1
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If Rolle's theorem is applicable for the function $f(x)=x(x+3) e^{-x / 2}$ on $[3,0]$, then the value of $c$ is
A
3
B
3 and -2
C
-2
D
-1
2
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
For all $x \in[0,2024]$ assume that $f(x)$ is differentiable, $f(0)=-2$ and $f^{\prime}(x) \geq 5$. Then, the least possible value of $f(2024)$ is
A
10120
B
10118
C
10122
D
2024
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$$ \int \frac{2 x^2 \cos x^2-\sin x^2}{x^2} d x= $$
A
$\frac{\sin x^2}{x^2}+c$
B
$\frac{\cos x^2}{x^2}+c$
C
$\sin x^2+c$
D
$\frac{\sin x^2}{x}+c$
4
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\int \frac{\log \left(1+x^4\right)}{x^3} d x=f(x) \log \left(\frac{1}{g(x)}\right)+\tan ^{-1}$ $(h(x))+c$, then $h(x)\left[f(x)+f\left(\frac{1}{x}\right)\right]=$
A
$h(x) g(-x)$
B
$\frac{g(x)}{2}$
C
$g(x)+g(-x)$
D
$g(x) h(x)$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12