1
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $A B C$ be an equilateral triangle of side a. $M$ and $N$ are two points on the sides $A B$ and $A C$, respectively such that $\mathbf{A N}={ }^{\prime} K \mathbf{A C}$ and $\mathbf{A B}=3 \mathbf{A M}$. If the vectors $\mathbf{B N}$ and $\mathbf{C M}$ are perpendicular, then $K=$
A
$\frac{1}{5}$
B
$\frac{2}{5}$
C
$-\frac{1}{5}$
D
$-\frac{2}{5}$
2
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $\mathbf{a}$ and $\mathbf{b}$ be two non-collinear vector of unit modulus. If $\mathbf{u}=\mathbf{a}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}$ and $\mathbf{v}=\mathbf{a} \times \mathbf{b}$, then $|\mathbf{v}|=$
A
$|\mathbf{u}|+|\mathbf{u} \cdot \mathbf{v}|$
B
$\frac{|\mathbf{u}|}{2}$
C
$|\mathbf{u}|+\frac{|\mathbf{u} \cdot \mathbf{b}|}{2}$
D
$\frac{|\mathbf{u}|}{5}$
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The shortest distance between the skew lines $\mathbf{r}=(-\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})+t(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$ and $\mathbf{r}=(7 \hat{\mathbf{i}}+4 \hat{\mathbf{k}})+s(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ is
A
15
B
0
C
9
D
16
4
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $m$ and $M$ denote the mean deviations about mean and about median respectively of the data $20,5,15,2$, $7,3,11$, then the mean deviation about the mean of $m$ and $M$ is
A
$\frac{1}{7}$
B
$\frac{38}{7}$
C
$\frac{36}{7}$
D
$\frac{37}{7}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12