a, b, c are non-coplanar vectors. If $$\mathbf{a}+3 \mathbf{b}+4 \mathbf{c}=x(\mathbf{a}-2 \mathbf{b}+3 \mathbf{c})+y(\mathbf{a}+5 \mathbf{b}-2 \mathbf{c}) +z(6 \mathbf{a}+14 \mathbf{b}+4 \mathbf{c}) \text {, then } x+y+z=$$
Three vectors of magnitudes $$a, 2 a, 3 a$$ are along the directions of the diagonals of 3 adjacent faces of a cube that meet in a point. Then, the magnitude of the sum of those diagonals is
If $$\mathbf{a}$$ is collinear with $$\mathbf{b}=3 \hat{i}+6 \hat{j}+6 \hat{k}$$ and $$\mathbf{a} \cdot \mathbf{b}=27$$, then $$|\mathbf{a}|=$$
Let $$a, b$$ and $$c$$ be unit vectors such that $$a$$ is perpendicular to the plane containing $$\mathbf{b}$$ and $$\mathbf{c}$$ and angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then, $$|\mathbf{a}+\mathbf{b}+\mathbf{c}|=$$