Let $f(x)=|x-1|, g(x)=[x]$ and $h(x)=f(x) g(x)$ where [.] is greatest integer function.
What is $\int_{0}^{2} h(x) dx$ equal to?
$-\frac{3}{2}$
$-1$
$0$
$\frac{1}{2}$
Let $\int \frac{d x}{\sqrt{x+1}-\sqrt{x-1}}=\alpha(x+1)^{\frac{3}{2}}+$ $$ \beta(x-1)^{\frac{3}{2}}+c $$
What is the value of $\alpha$?
$\frac{1}{3}$
$\frac{2}{3}$
$1$
$\frac{4}{3}$
Let $\int \frac{d x}{\sqrt{x+1}-\sqrt{x-1}}=\alpha(x+1)^{\frac{3}{2}}+$ $$ \beta(x-1)^{\frac{3}{2}}+c $$
What is the value of $\beta$?
$-\frac{2}{3}$
$-\frac{1}{3}$
$\frac{1}{3}$
$\frac{2}{3}$
Consider the following for the next two (02) items that follow:
The circle $x^2 + y^2 - 2x = 0$ is partitioned by line $y = x$ in two segments. Let $A_1, A_2$ be the areas of major and minor segments respectively.
What is the value of $A_1$?
$\frac{\pi - 2}{4}$
$\frac{\pi + 2}{4}$
$\frac{3\pi - 2}{4}$
$\frac{3\pi + 2}{4}$