If a vector of magnitude 2 units makes an angle $\frac{\pi}{3}$ with $2\hat{i}$, $\frac{\pi}{4}$ with $3\hat{j}$ and an acute angle $\theta$ with $4\hat{k}$, then what are the components of the vector?
Consider the following in respect of moment of a force:
1. The moment of force about a point is independent of point of application of force.
2. The moment of a force about a line is a vector quantity.
Which of the statements given above is/are correct?
For any vector $\vec{r}$, what is $\left(\vec{r}\cdot\hat{i}\right)\left(\vec{r}\times\hat{i}\right) + \left(\vec{r}\cdot\hat{j}\right)\left(\vec{r}\times\hat{j}\right) + \left(\vec{r}\cdot\hat{k}\right)\left(\vec{r}\times\hat{k}\right)$ equal to?
Let $\vec{a}$ and $\vec{b}$ be two vectors of magnitude 4 inclined at an angle $\frac{\pi}{3}$, then what is the angle between $\vec{a}$ and $\vec{a} - \vec{b}$?