For any vector $\vec{r}$, what is $\left(\vec{r}\cdot\hat{i}\right)\left(\vec{r}\times\hat{i}\right) + \left(\vec{r}\cdot\hat{j}\right)\left(\vec{r}\times\hat{j}\right) + \left(\vec{r}\cdot\hat{k}\right)\left(\vec{r}\times\hat{k}\right)$ equal to?
$\vec{0}$
$\vec{r}$
$2\vec{r}$
$3\vec{r}$
Let $\vec{a}$ and $\vec{b}$ be two vectors of magnitude 4 inclined at an angle $\frac{\pi}{3}$, then what is the angle between $\vec{a}$ and $\vec{a} - \vec{b}$?
$\frac{\pi}{2}$
$\frac{\pi}{3}$
$\frac{\pi}{4}$
$\frac{\pi}{6}$
Let $y_1(x)$ and $y_2(x)$ be two solutions of the differential equation $\frac{dy}{dx} = x$. If $y_1(0) = 0$ and $y_2(0) = 4$, then what is the number of points of intersection of the curves $y_1(x)$ and $y_2(x)$?
No point
One point
Two points
More than two points
The differential equation, representing the curve $y = e^{x}(a\cos{x} + b\sin{x})$ where $a$ and $b$ are arbitrary constants, is
$\frac{d^2y}{dx^2} + 2y = 0$
$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$
$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
$\frac{d^2y}{dx^2} + y = 0$