Two points $P$ and $Q$ lie on line $y = 2x + 3$. These two points $P$ and $Q$ are at a distance 2 units from another point $R(1, 5)$. What are the coordinates of the points $P$ and $Q$?
$(1 + \frac{2}{\sqrt{5}}, 5 + \frac{4}{\sqrt{5}}), (1 - \frac{2}{\sqrt{5}}, 5 - \frac{4}{\sqrt{5}})$
$(3 + \frac{2}{\sqrt{5}}, 5 + \frac{4}{\sqrt{5}}), (-1 - \frac{2}{\sqrt{5}}, 5 - \frac{4}{\sqrt{5}})$
$(1 - \frac{2}{\sqrt{5}}, 5 + \frac{4}{\sqrt{5}}), (1 + \frac{2}{\sqrt{5}}, 5 - \frac{4}{\sqrt{5}})$
$(3 - \frac{2}{\sqrt{5}}, 5 + \frac{4}{\sqrt{5}}), (-1 + \frac{2}{\sqrt{5}}, 5 - \frac{4}{\sqrt{5}})$
If two sides of a square lie on the lines $2x + y - 3 = 0$ and $4x + 2y + 5 = 0$, then what is the area of the square in square units?
6.05
6.15
6.25
6.35
ABC is a triangle with A(3, 5). The mid-points of sides AB, AC are at (-1, 2), (6, 4) respectively. What are the coordinates of centroid of the triangle ABC?
$\left(\frac{8}{3}, \frac{11}{3}\right)$
$\left(\frac{7}{3}, \frac{7}{3}\right)$
$\left(2, \frac{8}{3}\right)$
$\left(\frac{8}{3}, 2\right)$
ABC is an acute angled isosceles triangle. Two equal sides AB and AC lie on the lines 7x - y - 3 = 0 and x + y - 5 = 0. If θ is one of the equal angles, then what is cotθ equal to?
$\frac{1}{3}$
$\frac{1}{2}$
$\frac{2}{3}$
2