1
GATE PI 2012
MCQ (Single Correct Answer)
+1
-0.3
For the matrix $$A = \left[ {\matrix{ 5 & 3 \cr 1 & 3 \cr } } \right],$$ ONE of the normalized eigen vectors is given as
A
$$\left( {\matrix{ {{1 \over 2}} \cr {{{\sqrt 3 } \over 2}} \cr } } \right)$$
B
$$\left( {\matrix{ {{1 \over {\sqrt 2 }}} \cr {{{ - 1} \over {\sqrt 2 }}} \cr } } \right)$$
C
$$\left( {\matrix{ {{3 \over {\sqrt {10} }}} \cr {{{ - 1} \over {\sqrt {10} }}} \cr } } \right)$$
D
$$\left( {\matrix{ {{1 \over 5}} \cr {{2 \over {\sqrt 5 }}} \cr } } \right)$$
2
GATE PI 2011
MCQ (Single Correct Answer)
+1
-0.3
The eigen values of the following matrix $$\left[ {\matrix{ {10} & { - 4} \cr {18} & { - 12} \cr } } \right]$$ are
A
$$4,9$$
B
$$6,-8$$
C
$$4,8$$
D
$$-6,8$$
3
GATE PI 2010
MCQ (Single Correct Answer)
+1
-0.3
The value of $$q$$ for which the following set of linear equations $$2x+3y=0, 6x+qy=0$$ can have non-trivial solution is
A
$$2$$
B
$$7$$
C
$$9$$
D
$$11$$
4
GATE PI 2010
MCQ (Single Correct Answer)
+1
-0.3
If $$(1, 0, -1)$$$${}^T$$ is an eigen vector of the following matrix $$\left[ {\matrix{ 1 & { - 1} & 0 \cr { - 1} & 2 & { - 1} \cr 0 & { - 1} & 1 \cr } } \right]$$ then the corresponding eigen value is
A
$$1$$
B
$$2$$
C
$$3$$
D
$$5$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12