If Δ is the value of the determinant
$\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|$
then what is the value of the following determinant?
$\left| {\begin{array}{*{20}{c}} {{pa_1}}&{{b_1}}&{{qc_1}}\\ {{pa_2}}&{{b_2}}&{{qc_2}}\\ {{pa_3}}&{{b_3}}&{{qc_3}} \end{array}} \right|$
(p ≠ 0 or 1, q ≠ 0 or 1)
If a + b + c = 4 and ab + bc + ca = 0, then what is the value of the following determinant?
$\left| {\begin{array}{*{20}{c}} {{a}}&{{b}}&{{c}}\\ {{b}}&{{c}}&{{a}}\\ {{c}}&{{a}}&{{b}} \end{array}} \right|$
If a1, a2, a3, _ _ _ _ _, a9 are in GP, then what is the value of the following determinant?
$\left| {\begin{array}{*{20}{c}} {{ln\:a_1}}&{{ln\:a_2}}&{{ln\:a_3}}\\ {{ln\:a_4}}&{{ln\:a_5}}&{{ln\:a_6}}\\ {{ln\:a_7}}&{{ln\:a_8}}&{{ln\:a_9}} \end{array}} \right|$
Let $A = \left| {\begin{array}{*{20}{c}} p&q\\ r&s \end{array}} \right|$
where p, q, r and s are any four different prime numbers less than 20. What is the maximum value of the determinant?