1
NDA 2018 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
If u, v and w (all positive) are the pth, qth, and rth terms of a GP, then the determinant of the matrix $$\left( {\matrix{ {\ln \,u} & p & 1 \cr {\ln v} & q & 1 \cr {\ln w} & r & 1 \cr } } \right)$$ is
A
0
B
1
C
(p $$-$$ q) (q $$-$$ r) (r $$-$$ p)
D
$${\ln \,u}$$ $$\times$$ $${\ln \,v}$$ $$\times$$ $${\ln \,w}$$
2
NDA 2018 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
Let matrix B be the adjoint of a square matrix A, I be the identity matrix of same order as A. If k($$\ne$$ 0) is the determinant of the matrix A, then what is AB equal to?
A
I
B
kI
C
k2I
D
(1 / k)I
3
NDA 2018 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
What is the determinant of the matrix $$\left( {\matrix{ x & y & {y + z} \cr z & x & {z + x} \cr y & z & {x + y} \cr } } \right)$$ ?
A
(x $$-$$ y) (y $$-$$ z) (z $$-$$ x)
B
(x $$-$$ y) (y $$-$$ z)
C
(y $$-$$ z) (z $$-$$ x)
D
(z $$-$$ x)2 (x + y + z)
4
NDA 2018 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
If A, B and C are the angles of a triangle and $$\left| {\matrix{ 1 & 1 & 1 \cr {1 + \sin A} & {1 + \sin B} & {1 + \sin C} \cr {\sin A + {{\sin }^2}A} & {\sin B + {{\sin }^2}B} & {\sin C + {{\sin }^2}C} \cr } } \right| = 0$$, then which one of the following is correct?
A
The triangle ABC is isosceles
B
The triangle ABC is equilateral
C
The triangle ABC is scalene
D
No conclusion can be drawn with regard to the nature of the triangle
EXAM MAP