Consider the following for the next two (02) items that follow :
Let Δ(a, b, c, α) = $\left|\begin{array}{ccc} a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0 \end{array}\right|$
Consider the following for the next two (02) items that follow :
Let Δ(a, b, c, α) = $\left|\begin{array}{ccc} a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0 \end{array}\right|$
Consider the determinant
Δ = $\left|\begin{array}{lll}\text{a}_{11} & \text{a}_{12} & \text{a}_{13} \\ \text{a}_{21} & \text{a}_{22} & \text{a}_{23} \\ \text{a}_{31} & \text{a}_{32} & \text{a}_{33}\end{array}\right|$
If a13 = yz, a23 = zx, a33 = xy and the minors of a13, a23, a33 are respectively (z − y), (z − x), (y − x) then what is the value of Δ ?