1
NDA 2015 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
Consider the following statements
1. $${\sin ^{ - 1}}{4 \over 5} + {\sin ^{ - 1}}{3 \over 5} = {\pi \over 2}$$
2. $${\tan ^{ - 1}}\sqrt 3 + {\tan ^{ - 1}}1 = - {\tan ^{ - 1}}(2 + \sqrt 3 )$$
Which of the above statement(s) is/are correct?
1. $${\sin ^{ - 1}}{4 \over 5} + {\sin ^{ - 1}}{3 \over 5} = {\pi \over 2}$$
2. $${\tan ^{ - 1}}\sqrt 3 + {\tan ^{ - 1}}1 = - {\tan ^{ - 1}}(2 + \sqrt 3 )$$
Which of the above statement(s) is/are correct?
2
NDA 2016 Paper 1
MCQ (Single Correct Answer)
+2.5
-0.83
Consider the following statements
1. Theer exists $$\theta \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ for which $${\tan ^{ - 1}}(\tan \theta ) \ne 0$$.
2. $${\sin ^{ - 1}}\left( {{1 \over 3}} \right) - {\sin ^{ - 1}}\left( {{1 \over 5}} \right)$$
$$ = {\sin ^{ - 1}}\left( {{{2\sqrt 2 (\sqrt 3 - 1)} \over {15}}} \right)$$
Which of the above statements is/are correct?
1. Theer exists $$\theta \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ for which $${\tan ^{ - 1}}(\tan \theta ) \ne 0$$.
2. $${\sin ^{ - 1}}\left( {{1 \over 3}} \right) - {\sin ^{ - 1}}\left( {{1 \over 5}} \right)$$
$$ = {\sin ^{ - 1}}\left( {{{2\sqrt 2 (\sqrt 3 - 1)} \over {15}}} \right)$$
Which of the above statements is/are correct?
3
NDA 2016 Paper 1
MCQ (Single Correct Answer)
+2.5
-0.83
Consider the following statements
1. $${\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{1 \over x}} \right) = \pi $$
2. Their exist, $$x,y \in [ - 1,1]$$, where x $$\ne$$ y such that $${\sin ^{ - 1}}x + {\cos ^{ - 1}}y = {\pi \over 2}$$.
Which of the above statements is/are correct?
1. $${\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {{1 \over x}} \right) = \pi $$
2. Their exist, $$x,y \in [ - 1,1]$$, where x $$\ne$$ y such that $${\sin ^{ - 1}}x + {\cos ^{ - 1}}y = {\pi \over 2}$$.
Which of the above statements is/are correct?
4
NDA 2017 Paper 2
MCQ (Single Correct Answer)
+2.5
-0.83
The value of $${\sin ^{ - 1}}\left( {{3 \over 5}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right)$$ is equal to
Questions Asked from Inverse Trigonometric Function (Marks 2.5)
Number in Brackets after Paper Indicates No. of Questions
NDA Subjects
Mathematics
Algebra
Sets, Relations and FunctionsLogarithmsQuadratic Equations and InequalitiesSequence And SeriesBinomial TheoremMatricesDeterminantsPermutations and CombinationsProbabilityComplex NumbersVector AlgebraThree Dimensional GeometryStatistics
Trigonometry
Trigonometric Angles and EquationsInverse Trigonometric FunctionHeight and DistanceProperties of Triangles
Coordinate Geometry
Calculus
English
General Studies