1
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
A person invites a party of 10 friends at dinner and place so that 4 are on one round table and 6 on the other round table. The number of ways in which he can arrange the guests is
A
$ \frac{10!}{6!} $
B
$ \frac{10!}{24} $
C
$ \frac{9!}{24} $
D
None of these
2
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
From the top of a cliff 50 m high, the angles of depression of the top and bottom of a tower are observed to be $ 30^{\circ} $ and $ 45^{\circ} $. The height of tower is
A
50 m
B
$ 50 \sqrt{3} \mathrm{~m} $
C
$ 50(\sqrt{3}-1) \mathrm{m} $
D
$ 50\left(1-\frac{\sqrt{3}}{3}\right) \mathrm{m} $
3
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
If $ y=\tan ^{-1}\left(\frac{\sqrt{x}-x}{1+x^{\frac{3}{2}}}\right) $, then $ y^{\prime}(1) $ is equal to
A
0
B
$ \frac{1}{2} $
C
-1
D
$ -\frac{1}{4} $
4
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
The coefficient of $ x^{2} $ term in the binomial expansion of $ \left(\frac{1}{3} x^{\frac{1}{2}}+x^{\frac{-1}{4}}\right)^{10} $ is
A
$ \frac{70}{243} $
B
$ \frac{60}{423} $
C
$ \frac{50}{13} $
D
None of these
EXAM MAP