1
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

$$\int\limits_0^1 {{{\log (1 + x)} \over {1 + {x^2}}}dx} $$ is equal to :

A
$${\pi \over 8}\log 2$$
B
$${\pi \over 8}\log {1 \over 2}$$
C
$${\pi \over 4}\log 2$$
D
None of these
2
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

The area of one curvilinear triangle formed by curves y = sin x, y = cos x and X-axis, is

A
2 sq units
B
(2 + $$\sqrt2$$) sq units
C
(2 $$-$$ $$\sqrt2$$) sq units
D
None of these
3
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Solution of $$\left( {{{x + y - 1} \over {x + y - 2}}} \right){{dy} \over {dx}} = \left( {{{x + y + 1} \over {x + y + 2}}} \right)$$, given that y = 1 when x = 1 is

A
$$\ln \left| {{{{{(x - y)}^2} - 2} \over 2}} \right| = 2(x + y)$$
B
$$\ln \left| {{{{{(x + y)}^2} - 2} \over 2}} \right| = 2(x - y)$$
C
$$\ln \left| {{{{{(x - y)}^2} + 2} \over 2}} \right| = 2(x + y)$$
D
$$\ln \left| {{{{{(x + y)}^2} + 2} \over 2}} \right| = 2(x + y)$$
4
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

If $$y = \sin \left( {2{{\tan }^{ - 1}}\sqrt {{{1 - x} \over {1 + x}}} } \right)$$, then $${{dy} \over {dx}}$$ is :

A
1
B
$$-$$1
C
$${x \over {\sqrt {{x^2} - 1} }}$$
D
$${{ - x} \over {\sqrt {1 - {x^2}} }}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12