1
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Let a, b, c be vectors of lengths 3, 4, 5 respectively and a be perpendicular to (b + c), b to (c + a) and c to (a + b), then the value of (a + b + c) is

A
2$$\sqrt5$$
B
2$$\sqrt2$$
C
10$$\sqrt5$$
D
5$$\sqrt2$$
2
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

For non-zero vectors a, b, c; |(a $$\times$$ b) . c| = |a| |b| |c| holds if and only if

A
a . b = 0, b . c = 0
B
b . c = 0, c . a = 0
C
c . a = 0, a . b = 0
D
a . b = b . c = c . a = 0
3
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Angle between the diagonals of a cube is

A
$$\pi$$ / 3
B
$$\pi$$ / 2
C
cos$$-$$1(1/3)
D
cos$$-$$1(1/$$\sqrt3$$)
4
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Consider the two lines

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$ and $${L_2}:{{x - 2} \over 1} = {{y + 2} \over 2} = {{z - 3} \over 3}$$

The unit vector perpendicular to both the lines L1 and L2 is

A
$${{ - \widehat i + 7\widehat j + 7\widehat k} \over {\sqrt {99} }}$$
B
$${{ - \widehat i - 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
C
$${{ - \widehat i + 7\widehat j + 5\widehat k} \over {5\sqrt 3 }}$$
D
$${{7\widehat i - 7\widehat j + \widehat k} \over {\sqrt {99} }}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12