1
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Let $T_1$ be the tangent drawn at a point $P(\sqrt{2}, \sqrt{3})$ on the ellipse $\frac{x^2}{4}+\frac{y^2}{6}=1$. If ( $\alpha, \beta$ ) is the point where, $T_1$ intersects another tangent $T_2$ to the ellipse perpendicularly, then $\alpha^2+\beta^2$ is equal to
A
10
B
52
C
26
D
$5 / 12$
2
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=x+\sqrt{2}$ is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{2}=1$, then equations of its directrices are
A
$x= \pm \sqrt{3}$
B
$x= \pm \sqrt{\frac{8}{3}}$
C
$x= \pm \sqrt{\frac{2}{3}}$
D
$x= \pm \sqrt{\frac{4}{3}}$
3
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The area of the quadrilateral formed with the foci of the hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$ and its conjugate hyperbola is (in sq units)
A
24
B
25
C
16
D
50
4
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The length of the internal bisector of angle $A$ in $\triangle A B C$ with vertices $A(4,7,8), B(2,3,4)$ and $C(2,5,7)$ is
A
$\frac{1}{3} \sqrt{29}$
B
$\frac{2}{3} \sqrt{29}$
C
$\frac{2}{3} \sqrt{34}$
D
$\frac{4}{3} \sqrt{34}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12