If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} < 0$$ and $$|\mathbf{a} \cdot \mathbf{b}|=|\mathbf{a} \times \mathbf{b}|$$ then the angle between the vectors $$\mathbf{a}$$ and $$\mathbf{b}$$ is
Let $$L_1$$ (resp, $$L_2$$ ) be the line passing through $$2 \hat{\mathbf{i}}-\hat{\mathbf{k}}$$ (resp. $$2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})$$ and parallel to $$3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ ( resp. $$\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ ). Then the shortest distance between the lines $$L_1$$ and $$L_2$$ is equal to
Let $$\mathbf{a}, \mathbf{b}$$ and $$\mathbf{c}$$ be three-unit vectors and $$\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}=0$$. If the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then $$[\mathbf{a b c}]^2$$ is equal to
Let $$x$$ and $$y$$ are real numbers. If $$\mathbf{a}=(\sin x) \hat{\mathbf{i}}+(\sin y) \hat{\mathbf{j}}$$ and $$\mathbf{b}=(\cos x) \hat{\mathbf{i}}+(\cos y) \hat{\mathbf{j}}$$, then $$|\mathbf{a} \times \mathbf{b}|$$ is