1
AP EAPCET 2021 - 19th August Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$X$$ intercept of the plane containing the line of intersection of the planes $$x-2 y+z+2=0$$ and $$3 x-y-z+1=0$$ and also passing through $$(1,1,1)$$ is

A
$$\frac{1}{3}$$
B
$$2$$
C
$$\frac{1}{2}$$
D
$$\frac{1}{4}$$
2
AP EAPCET 2021 - 19th August Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $$\mathbf{a}$$ and $$\mathbf{b}$$ are two vectors such that $$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} < 0$$ and $$|\mathbf{a} \cdot \mathbf{b}|=|\mathbf{a} \times \mathbf{b}|$$ then the angle between the vectors $$\mathbf{a}$$ and $$\mathbf{b}$$ is

A
$$\frac{\pi}{4}$$
B
$$\sec ^{-1}(-\sqrt{2})$$
C
$$\tan ^{-1}\left(\frac{-1}{2}\right)$$
D
$$\sin ^{-1}\left(\frac{1}{2}\right)$$
3
AP EAPCET 2021 - 19th August Evening Shift
MCQ (Single Correct Answer)
+1
-0

Let $$L_1$$ (resp, $$L_2$$ ) be the line passing through $$2 \hat{\mathbf{i}}-\hat{\mathbf{k}}$$ (resp. $$2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})$$ and parallel to $$3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$$ ( resp. $$\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ ). Then the shortest distance between the lines $$L_1$$ and $$L_2$$ is equal to

A
$$\frac{10}{\sqrt{35}}$$
B
$$\frac{8}{\sqrt{35}}$$
C
$$\frac{11}{\sqrt{35}}$$
D
$$\frac{9}{\sqrt{35}}$$
4
AP EAPCET 2021 - 19th August Evening Shift
MCQ (Single Correct Answer)
+1
-0

Let $$\mathbf{a}, \mathbf{b}$$ and $$\mathbf{c}$$ be three-unit vectors and $$\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}=0$$. If the angle between $$\mathbf{b}$$ and $$\mathbf{c}$$ is $$\frac{\pi}{3}$$. Then $$[\mathbf{a b c}]^2$$ is equal to

A
$$\frac{3}{2}$$
B
$$\frac{3}{4}$$
C
$$\frac{2}{3}$$
D
$$\frac{4}{3}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12