The value of $$\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$$ is
Let $$A, B, C, D$$ be square real matrices such that $$C^T=D A B, D^{\mathrm{T}}=A B C$$ and $$S=A B C D$$, then $$S^2$$ is equal to
$$A=\left[\begin{array}{ccc}a^2 & 15 & 31 \\ 12 & b^2 & 41 \\ 35 & 61 & c^2\end{array}\right]$$ and $$B=\left[\begin{array}{ccc}2 a & 3 & 5 \\ 2 & 2 b & 8 \\ 1 & 4 & 2 c-3\end{array}\right]$$ are two matrices such that the sum of the principal diagonal elements of both $$A$$ and $$B$$ are equal, then the product of the principal diagonal elements of $$B$$ is
Let $$a, b$$ and $$c$$ be such that $$b+c \neq 0$$ and $$\begin{aligned} & \left|\begin{array}{ccc} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{array}\right| \\ & +\left|\begin{array}{ccc} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n-1} b & (-1)^n c \end{array}\right|=0 \text {, } \\ & \end{aligned}$$
then the value of $$n$$ is