Marks 1
The figure shows a shape $$ABC$$ and its minor image $${A_1}$$$${B_1}$$$${C_1}$$ across the horizontal axis ($$x$$-axis). The coordinate transformati...
The eigen values of the matrix $$A = \left[ {\matrix{
1 & { - 1} & 5 \cr
0 & 5 & 6 \cr
0 & { - 6} & 5 \cr
} }...
If $$V$$ is a non-zero vector of dimension $$3 \times 1,$$ then the matrix $$\,A = V{V^T}$$ has a rank $$=$$ ________
Let $$A$$ be an $$n \times n$$ matrix with rank $$r\left( {0 < r < n} \right).$$ Then $$AX=0$$ has $$p$$ independent solutions, where $$p$$ is
A scalar valued function is defined as $$f\left( x \right){x^T}Ax + {b^T}x + c,$$ where $$A$$ is a symmetric positive definite matrix with dimension $...
For the matrix $$A$$ satisfying the equation given below, the eigen values are
$$$\left[ A \right]\left[ {\matrix{
1 & 2 & 3 \cr
7 &...
The dimension of the null space of the matrix $$\left[ {\matrix{
0 & 1 & 1 \cr
1 & { - 1} & 0 \cr
{ - 1} & 0 & { ...
Given that $$A = \left[ {\matrix{
{ - 5} & { - 3} \cr
2 & 0 \cr
} } \right]$$ and $${\rm I} = \left[ {\matrix{
1 & 0 \cr
...
The matrix $$M = \left[ {\matrix{
{ - 2} & 2 & { - 3} \cr
2 & 1 & 6 \cr
{ - 1} & { - 2} & 0 \cr
} } \right]$$...
A real $$n \times n$$ matrix $$A$$ $$ = \left[ {{a_{ij}}} \right]$$ is defined as
follows $$\left\{ {\matrix{
{{a_{ij}} = i,} & {\forall i = j...
$$X$$ and $$Y$$ are non-zero square matrices of size $$n \times n$$. If $$XY = {O_{n \times n}}$$ then
The eigen values of a $$2 \times 2$$ matrix $$X$$ are $$-2$$ and $$-3$$. The eigen values of matrix $${\left( {X + 1} \right)^{ - 1}}\left( {X + 5{\rm...
Let $$A = \left[ {{a_{ij}}} \right],\,\,1 \le i,j \le n$$ with $$n \ge 3$$ and
$${{a_{ij}} = i.j.}$$ Then the rank of $$A$$ is
Identity which one of the following is an eigen vectors of the matrix $$A = \left[ {\matrix{
1 & 0 \cr
{ - 1} & { - 2} \cr
} } \ri...
Let $$A$$ be $$3 \times 3$$ matrix with rank $$2.$$ Then $$AX=O$$ has
The necessary condition to diagonalize a matrix is that
The rank of matrix $$A = \left[ {\matrix{
1 & 2 & 3 \cr
3 & 4 & 5 \cr
4 & 6 & 8 \cr
} } \right]$$ is
Marks 2
Consider the matrix $$A = \left( {\matrix{
2 & 1 & 1 \cr
2 & 3 & 4 \cr
{ - 1} & { - 1} & { - 2} \cr
} } \righ...
One pair of eigenvectors corresponding to the two eigen values of the matrix $$\left[ {\matrix{
0 & { - 1} \cr
1 & {0 - } \cr
} } ...
Let $$A$$ be $$n \times n$$ real matrix such that $${A^2} = {\rm I}$$ and $$Y$$ be an $$n$$-diamensional vector. Then the linear system of equations $...
A system of linear simultaneous equations is given as $$AX=b$$
where $$A = \left[ {\matrix{
1 & 0 & 1 & 0 \cr
0 & 1 & 0 &...
A system of linear simultaneous equations is given as $$AX=b$$
where $$A = \left[ {\matrix{
1 & 0 & 1 & 0 \cr
0 & 1 & 0 &...
For a given $$2x2$$ matrix $$A,$$ it is observved that $$A\left[ {\matrix{
1 \cr
{ - 1} \cr
} } \right] = - 1\left[ {\matrix{
1 \cr
...