1
GATE IN 2012
MCQ (Single Correct Answer)
+1
-0.3
Given that $$A = \left[ {\matrix{
{ - 5} & { - 3} \cr
2 & 0 \cr
} } \right]$$ and $${\rm I} = \left[ {\matrix{
1 & 0 \cr
0 & 1 \cr
} } \right],$$ the value of $${A^3}$$ is
2
GATE IN 2011
MCQ (Single Correct Answer)
+1
-0.3
The matrix $$M = \left[ {\matrix{
{ - 2} & 2 & { - 3} \cr
2 & 1 & 6 \cr
{ - 1} & { - 2} & 0 \cr
} } \right]$$ has eigen values $$-3, -3, 5.$$ An eigen vector corresponding to the eigen value $$5$$ is $${\left[ {\matrix{
1 & 2 & { - 1} \cr
} } \right]^T}.$$ One of the eigen vector of the matrix $${M^3}$$ is
3
GATE IN 2010
MCQ (Single Correct Answer)
+1
-0.3
A real $$n \times n$$ matrix $$A$$ $$ = \left[ {{a_{ij}}} \right]$$ is defined as
follows $$\left\{ {\matrix{ {{a_{ij}} = i,} & {\forall i = j} \cr { = 0,} & {otherwise} \cr } .} \right.$$
follows $$\left\{ {\matrix{ {{a_{ij}} = i,} & {\forall i = j} \cr { = 0,} & {otherwise} \cr } .} \right.$$
The sum of all $$n$$ eigen values of $$A$$ is
4
GATE IN 2010
MCQ (Single Correct Answer)
+1
-0.3
$$X$$ and $$Y$$ are non-zero square matrices of size $$n \times n$$. If $$XY = {O_{n \times n}}$$ then
Questions Asked from Linear Algebra (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE IN Subjects