1
GATE IN 2017
+1
-0.3
The figure shows a shape $$ABC$$ and its minor image $${A_1}$$$${B_1}$$$${C_1}$$ across the horizontal axis ($$x$$-axis). The coordinate transformation matrix that maps $$ABC$$ to $${A_1}$$$${B_1}$$$${C_1}$$ is
A
$$\left[ {\matrix{ 0 & 1 \cr 1 & 0 \cr } } \right]$$
B
$$\left[ {\matrix{ 0 & 1 \cr { - 1} & 0 \cr } } \right]$$
C
$$\left[ {\matrix{ { - 1} & 0 \cr 0 & 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & 0 \cr 0 & {- 1} \cr } } \right]$$
2
GATE IN 2017
+1
-0.3
The eigen values of the matrix $$A = \left[ {\matrix{ 1 & { - 1} & 5 \cr 0 & 5 & 6 \cr 0 & { - 6} & 5 \cr } } \right]$$ are
A
$$-1,5,6$$
B
$$1, - 5 \pm j6$$
C
$$1,5 \pm j6$$
D
$$1,5,5$$
3
GATE IN 2017
Numerical
+1
-0
If $$V$$ is a non-zero vector of dimension $$3 \times 1,$$ then the matrix $$\,A = V{V^T}$$ has a rank $$=$$ ________
4
GATE IN 2015
+1
-0.3
Let $$A$$ be an $$n \times n$$ matrix with rank $$r\left( {0 < r < n} \right).$$ Then $$AX=0$$ has $$p$$ independent solutions, where $$p$$ is
A
$$r$$
B
$$n$$
C
$$n-r$$
D
$$n+r$$
GATE IN Subjects
EXAM MAP
Medical
NEET