1
GATE IN 2007
MCQ (Single Correct Answer)
+1
-0.3
Let $$A = \left[ {{a_{ij}}} \right],\,\,1 \le i,j \le n$$ with $$n \ge 3$$ and
$${{a_{ij}} = i.j.}$$ Then the rank of $$A$$ is
A
$$0$$
B
$$-1$$
C
$$n-1$$
D
$$n$$
2
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
Identity which one of the following is an eigen vectors of the matrix $$A = \left[ {\matrix{ 1 & 0 \cr { - 1} & { - 2} \cr } } \right]$$
A
$${\left[ {\matrix{ { - 1} & 1 \cr } } \right]^T}$$
B
$${\left[ {\matrix{ { 3} & -1 \cr } } \right]^T}$$
C
$${\left[ {\matrix{ { 1} & -1 \cr } } \right]^T}$$
D
$${\left[ {\matrix{ { - 2} & 1 \cr } } \right]^T}$$
3
GATE IN 2005
MCQ (Single Correct Answer)
+1
-0.3
Let $$A$$ be $$3 \times 3$$ matrix with rank $$2.$$ Then $$AX=O$$ has
A
only the trivial solution $$X=O$$
B
one independent solution
C
two independent solutions
D
three independent solutions
4
GATE IN 2001
MCQ (Single Correct Answer)
+1
-0.3
The necessary condition to diagonalize a matrix is that
A
all its eigen values should be distinct
B
its eigen vectors should be independent
C
its eigen values should be real
D
the matrix is non-singular
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12