1
GATE IN 2016
Numerical
+2
-0
Consider the matrix $$A = \left( {\matrix{ 2 & 1 & 1 \cr 2 & 3 & 4 \cr { - 1} & { - 1} & { - 2} \cr } } \right)$$ whose eigen values are $$1, -1$$ and $$3$$. Then trace of $$\left( {{A^3} - 3{A^2}} \right)$$ is ________.
Your input ____
2
GATE IN 2013
MCQ (Single Correct Answer)
+2
-0.6
One pair of eigenvectors corresponding to the two eigen values of the matrix $$\left[ {\matrix{ 0 & { - 1} \cr 1 & {0 - } \cr } } \right]$$
A
$$\left[ {\matrix{ 1 \cr { - j} \cr } } \right],\left[ {\matrix{ j \cr { - 1} \cr } } \right]$$
B
$$\left[ {\matrix{ 0 \cr 1 \cr } } \right],\left[ {\matrix{ { - 1} \cr 0 \cr } } \right]$$
C
$$\left[ {\matrix{ 1 \cr j \cr } } \right],\left[ {\matrix{ 0 \cr 1 \cr } } \right]$$
D
$$\left[ {\matrix{ 1 \cr j \cr } } \right],\left[ {\matrix{ j \cr 1 \cr } } \right]$$
3
GATE IN 2007
MCQ (Single Correct Answer)
+2
-0.6
Let $$A$$ be $$n \times n$$ real matrix such that $${A^2} = {\rm I}$$ and $$Y$$ be an $$n$$-diamensional vector. Then the linear system of equations $$Ax=y$$ has
A
no solution
B
unique solution
C
more than one but infinitely many dependent solutions.
D
Infinitely many dependent solutions
4
GATE IN 2006
MCQ (Single Correct Answer)
+2
-0.6
A system of linear simultaneous equations is given as $$AX=b$$
where $$A = \left[ {\matrix{ 1 & 0 & 1 & 0 \cr 0 & 1 & 0 & 1 \cr 1 & 1 & 0 & 0 \cr 0 & 0 & 0 & 1 \cr } } \right]\,\,\& \,\,b = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr 1 \cr } } \right]$$

Which of the following statement is true?

A
$$x$$ is a null vector
B
$$x$$ is unique
C
$$x$$ does not exist
D
$$x$$ has infinitely many values
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12