A transformer with turns ratio $$\frac{N_1}{N_2}=\frac{50}{1}$$ is connected to a $$120 \mathrm{~V}$$ AC supply. If primary and secondary circuit resistances are $$1.5 \mathrm{~k} \Omega$$ and $$1 \Omega$$ respectively, then find out power of output.
A proton is projected with velocity $$\mathbf{v}=2 \hat{\mathbf{i}}$$ in a region where magnetic field $$\mathbf{B}=(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \mu \mathrm{T}$$ and electric field $$\mathbf{E}=10 \hat{\mathbf{i}} \mu \mathrm{V} / \mathrm{m}$$. Then find out the net acceleration of proton
The given transistor operates in saturation region then what should be the value of $$V_{B B}$$ ?
$$\begin{aligned} & \left(R_{\text {out }}=200 \Omega, R_{\text {in }}=100 \mathrm{~k} \Omega, V_{C C}=3 \mathrm{~V},\right. \\\\ & \left.V_{B E}=0.7 \mathrm{~V}, V_{C E}=0, \beta=200\right) \end{aligned}$$
In figure, two parallel infinitely long current carrying wires are shown. If resultant magnetic field at point $$A$$ is zero. Then determine the value of current $$I$$.