The solution set of the equation $\left(x \in\left(0, \frac{\pi}{2}\right)\right) \tan (\pi \tan x)=\cot (\pi \cot x)$, is
If $f(x)=\int\limits_0^{\sin ^2 x} \sin ^{-1} \sqrt{t} d t$ and $g(x)=\int\limits_0^{\cos ^2 x} \cos ^{-1} \sqrt{t} d t$, then the value of $f(x)+g(x)$ is
The value of $\int\limits_{-100}^{100} \frac{\left(x+x^3+x^5\right)}{\left(1+x^2+x^4+x^6\right)} d x$ is
Let $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ be defined as follows :
$\left.\begin{array}{rl}f(x) & =1 \text { if } x \text { is rational } \\ & =0 \text { if } x \text { is irrational }\end{array}\right]$ and
$\left.\begin{array}{rl}g(x) & =0 \text { if } x \text { is rational } \\ & =1 \text { if } x \text { is irrational }\end{array}\right]$ then