1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If ' $f$ ' is the inverse function of ' $g$ ' and $g^{\prime}(x)=\frac{1}{1+x^n}$, then the value of $f^{\prime}(x)$ is

A
$1+\{f(x)\}^n$
B
$1-\{f(x)\}^n$
C
$\{1+f(x)\}^n$
D
$\{f(x)\}^n$
2
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If the matrix $\left(\begin{array}{ccc}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right)$ is orthogonal, then the values of $a, b, c$ are

A
$a= \pm \frac{1}{\sqrt{3}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{2}}$
B
$a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{3}}$
C
$a=-\frac{1}{\sqrt{2}}, b=-\frac{1}{\sqrt{6}}, c=-\frac{1}{\sqrt{3}}$
D
$a=\frac{1}{\sqrt{3}}, b=\frac{1}{\sqrt{6}}, c=\frac{1}{\sqrt{3}}$
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $|A|^2=25$, then $|\alpha|$ equals to

A
5$^2$
B
1
C
$\frac{1}{5}$
D
5
4
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

A function $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfies $f\left(\frac{x+y}{3}\right)=\frac{f(x)+f(y)+f(0)}{3}$ for all $x, y \in \mathbb{R}$. If the function ' $f$ ' is differentiable at $x=0$, then $f$ is

A
linear
B
quadratic
C
cubic
D
biquadratic
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12