1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If ' $f$ ' is the inverse function of ' $g$ ' and $g^{\prime}(x)=\frac{1}{1+x^n}$, then the value of $f^{\prime}(x)$ is

A
$1+\{f(x)\}^n$
B
$1-\{f(x)\}^n$
C
$\{1+f(x)\}^n$
D
$\{f(x)\}^n$
2
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If the matrix $\left(\begin{array}{ccc}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right)$ is orthogonal, then the values of $a, b, c$ are

A
$a= \pm \frac{1}{\sqrt{3}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{2}}$
B
$a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{3}}$
C
$a=-\frac{1}{\sqrt{2}}, b=-\frac{1}{\sqrt{6}}, c=-\frac{1}{\sqrt{3}}$
D
$a=\frac{1}{\sqrt{3}}, b=\frac{1}{\sqrt{6}}, c=\frac{1}{\sqrt{3}}$
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $|A|^2=25$, then $|\alpha|$ equals to

A
5$^2$
B
1
C
$\frac{1}{5}$
D
5
4
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

A function $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfies $f\left(\frac{x+y}{3}\right)=\frac{f(x)+f(y)+f(0)}{3}$ for all $x, y \in \mathbb{R}$. If the function ' $f$ ' is differentiable at $x=0$, then $f$ is

A
linear
B
quadratic
C
cubic
D
biquadratic
EXAM MAP