1
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int {\cos (\log x)dx} $$ = F(x) + C, where C is an arbitrary constant. Here, F(x) is equal to
A
$$x[\cos (\log x) + \sin (\log x)]$$
B
$$x[\cos (\log x) - \sin (\log x)]$$
C
$${x \over 2}[\cos (\log x) + \sin (\log x)]$$
D
$${x \over 2}[\cos (\log x) - \sin (\log x)]$$
2
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int {{{{x^2} - 1} \over {{x^4} + 3{x^2} + 1}}dx} $$ (x > 0) is
A
$${\tan ^{ - 1}}\left( {x + {1 \over x}} \right) + C$$
B
$${\tan ^{ - 1}}\left( {x - {1 \over x}} \right) + C$$
C
$${\log _e}\left| {{{x + {1 \over x} - 1} \over {x + {1 \over x} + 1}}} \right| + C$$
D
$${\log _e}\left| {{{x - {1 \over x} - 1} \over {x - {1 \over x} + 1}}} \right| + C$$
3
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let I = $$\left| {\int {_{10}^{19}{{\sin x} \over {1 + {x^8}}}dx} } \right|$$. Then,
A
| I | < 10$$-$$9
B
| I | < 10$$-$$7
C
| I | < 10$$-$$5
D
| I | > 10$$-$$7
4
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $${I_1} = \int_0^n {[x]} \,dx$$ and $${I_2} = \int_0^n {\{ x\} } \,dx$$, where [x] and {x} are integral and fractional parts of x and n $$ \in $$ N $$-$$ {1}. Then I1 / I2 is equal to
A
$${1 \over {n - 1}}$$
B
$${1 \over n}$$
C
n
D
n $$-$$ 1
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12