1
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$f(x) = \left\{ {\matrix{ {{{{x^p}} \over {{{(\sin x)}^q}}},} & {if\,0 < x \le {\pi \over 2}} \cr {0,} & {if\,x = 0} \cr } } \right.$$, $$(p,q \in R)$$. Then, Lagrange's mean value theorem is applicable to f(x) in closed interval [0, x]
A
for all p, q
B
only when p > q
C
only when p < q
D
for no value of p, q
2
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\mathop {\lim }\limits_{x \to 0} {(\sin x)^{2\tan x}}$$ is equal to
A
2
B
1
C
0
D
does not exist
3
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int {\cos (\log x)dx} $$ = F(x) + C, where C is an arbitrary constant. Here, F(x) is equal to
A
$$x[\cos (\log x) + \sin (\log x)]$$
B
$$x[\cos (\log x) - \sin (\log x)]$$
C
$${x \over 2}[\cos (\log x) + \sin (\log x)]$$
D
$${x \over 2}[\cos (\log x) - \sin (\log x)]$$
4
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
Change Language
$$\int {{{{x^2} - 1} \over {{x^4} + 3{x^2} + 1}}dx} $$ (x > 0) is
A
$${\tan ^{ - 1}}\left( {x + {1 \over x}} \right) + C$$
B
$${\tan ^{ - 1}}\left( {x - {1 \over x}} \right) + C$$
C
$${\log _e}\left| {{{x + {1 \over x} - 1} \over {x + {1 \over x} + 1}}} \right| + C$$
D
$${\log _e}\left| {{{x - {1 \over x} - 1} \over {x - {1 \over x} + 1}}} \right| + C$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12