1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Water is being filled at the rate of $$1 \mathrm{~cm}^3 / \mathrm{s}$$ in a right circular conical vessel (vertex downwards) of height $$35 \mathrm{~cm}$$ and diameter $$14 \mathrm{~cm}$$. When the height of the water levels is $$10 \mathrm{~cm}$$, the rate (in $$\mathrm{cm}^2 / \mathrm{sec}$$) at which the wet conical surface area of the vessel increases is

A
$$\frac{\sqrt{26}}{10}$$
B
5
C
$$\frac{\sqrt{21}}{5}$$
D
$$\frac{\sqrt{26}}{5}$$
2
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let $$\frac{\sin A}{\sin B}=\frac{\sin (A-C)}{\sin (C-B)}$$, where $$A, B$$ and $$C$$ are angles of a $$\triangle A B C$$. If the lengths of the sides opposite these angles are $$a, b$$ and $$c$$ respectively, then

A
$$b^2-a^2=a^2+c^2$$
B
$$b^2, c^2, a^2$$ are in AP
C
$$c^2, a^2, b^2$$ are in AP
D
$$a^2, b^2, c^2$$ are in AP
3
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

$$\sum_\limits{\substack{i, j=0 \\ i \neq j}}^n{ }^n C_i{ }^n C_j$$ is equal to

A
$$2^{2 n}-{ }^{2 n} C_n$$
B
$$2^{2 n-1}-{ }^{2 n-1} C_{n-1}$$
C
$$2^{2 n}-\frac{1}{2}\left({ }^{2 n} C_n\right)$$
D
$$2^{n-1}+2\left({ }^{2 n-1} C_n\right)$$
4
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let the functions $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ be defined by $$f(x)=e^{x-1}-e^{-|x-1|}$$ and $$g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)$$. Then, the area of the region in the first quadrant bounded by the curves $$y=f(x), y=g(x)$ and $x=0$$ is.

A
$$(2-\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)$$
B
$$(2+\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)$$
C
$$(2-\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)$$
D
$$(2+\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12