1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

The equation of the line passing through $$(-4,3,1)$$ parallel to the plane $$x+2 y-z-5=0$$ and intersecting the line $$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{-1}$$ is

A
$$\frac{x+4}{3}=\frac{y-3}{-1}=\frac{z-1}{1}$$
B
$$\frac{x+4}{-1}=\frac{y-3}{1}=\frac{z-1}{1}$$
C
$$\frac{x+4}{1}=\frac{y-3}{1}=\frac{z-1}{3}$$
D
$$\frac{x-4}{2}=\frac{y+3}{1}=\frac{z+1}{4}$$
2
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let $$\alpha, \beta$$ be the roots of the equation $$x^2-p x+r=0$$ and $$\frac{\alpha}{2}, 2 \beta$$ be the roots of the equation $$x^2-q x+r=0$$. Then, the value of $$r$$ is equal to

A
$$\frac{2}{9}(p-q)(2 q-p)$$
B
$$\frac{2}{9}(q-2 p)(2 q-p)$$
C
$$\frac{2}{9}(q-p)(2 p-q)$$
D
$$\frac{2}{9}(2 p-q)(2 q-p)$$
3
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

$$ \text { If } A=\left[\begin{array}{cc} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{array}\right] \text {, then } A(\operatorname{adj} A)^{-1} \text { equals to } $$

A
$$ \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] $$
B
$$ \left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] $$
C
$$ \left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] $$
D
$$ \left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right] $$
4
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

$$ \text { The value of } \lim _\limits{x \rightarrow 0} \frac{(27+x)^{1 / 3}-3}{9-(27+x)^{2 / 3}} \text { equals to } $$

A
$$-\frac{1}{3}$$
B
$$\frac{1}{6}$$
C
$$-\frac{1}{6}$$
D
$$\frac{1}{3}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12